
CONSTUM STUDENT COMPETITION PROBLEMS & SOLUTIONS
April 13, 2007

1. Real-World Application (Agriculture): Farmer Bob has 53141592653 eggs. He packs them into
cartons, each of which holds a dozen eggs, until he no longer has enough eggs to fill a carton.
Then he takes these leftover eggs and makes an omelette. How many eggs go into his omelette?

Solution: We are being asked to reduce a large number modulo 12. Note that 52 = 25, which
is congruent to 1 modulo 12. The exponent in the problem is equal to 2n + 1 for some whole
number n, so

53141592653 = 52n+1 = (52)n · 51 ≡ 1n51 = 5 mod 12.

Solution 2: (without congruences):

We are being asked to find the remainder when a large power of 5 is divided by 12. Since the
exponent is odd, we may write it as 2n + 1, where n is a natural number. Now note that

52n+1 = (25)n·5 = (24+1)n·5 = (1+24+

(
n

2

)
242+· · ·+24n)·5 = 5+5(24+

(
n

2

)
242+· · ·+24n).

Since the second summand in this last expression is divisible by 12, the remainder upon
division by 12 is 5.

2. Fix a positive real number x0, and define a sequence (xi) by

xi = f(xi−1) for i > 0,

where f(x) = x
2

+ 1
x
. Find limi→∞ xi.

Solution: First, note that the sequence is positive. When does it decrease? increase? This
is equivalent to knowing the sign of

g(x) := f(x)− x

for all positive x. Note that g is continuous on the positive real line. Solving g(x) = 0 yields
x =

√
2. Note that g(2) < 0 and g(1) > 0. Therefore, for all x >

√
2, g(x) < 0 (i.e., f(x) < x),

and for all x <
√

2, g(x) > 0 (i.e., f(x) > x).

Now pick 0 < x <
√

2. Numerical experimentation suggests that f(x) >
√

2. Here’s how to
prove it. Let h(x) = f(x) − √2. Since h′(x) = 1

2
− 1

x2 , we see that
√

2 is the only positive

critical point for h. Since h(
√

2) = 0, and h(1) and h(2) are positive, we see that h(x) is
positive for all positive x 6= √

2.

Thus, if x 6= √
2 then f(x) >

√
2.

Therefore, if we ignore the initial term x0, we see that our sequence is decreasing, and bounded
below by

√
2. Therefore, it has a limit L ≥ √

2. Since g is contiuous near L, we have

g(L) = lim
x→L

g(x) = lim
i→∞

g(xi) = 0.

Therefore, L =
√

2.

I wouldn’t be surprised if a simpler proof is possible.



3. Find (with proof) all continuous functions f : R→ R satisfying

∫ y

x

f(t)dt = (y − x)f

(
x + 2y

3

)

for all x, y ∈ R.

Solution: Assume

(1)

∫ y

x

f(t)dt = (y − x)f

(
x + 2y

3

)

for all x, y ∈ R. Interchanging x, y in (1) we get

(2)

∫ x

y

f(t)dt = (x− y)f

(
y + 2x

3

)

Adding together (1) and (2), we find

(3) (y − x)f

(
x + 2y

3

)
+ (x− y)f

(
y + 2x

3

)
= 0

for all x, y ∈ R. From (3) we find

(4) f

(
x + 2y

3

)
− f

(
y + 2x

3

)
= 0

for all x, y ∈ R. Let u, v ∈ R be arbitrary numbers. Setting

x =
2v − u

3
and y =

2u− v

3

in (4) will give us f(u) = f(v). Therefore f must be a constant. Conversely, every constant
function satisfies (1).

4. Let A be a square matrix with integer entries. Assume that the set consisting of all entries
appearing in at least one power of A is bounded. Show that | det(A)| ≤ 1.

Solution Since A has integer entries, every power of A will have integer entries, their absolute
values being bounded by some constant M . But there are only finitely many square integer
matrices of a given size with the property that the absolute values of all of their entries are
bounded by M . Consequently, two powers of A must coincide:

(1) Ak = Al,

with 1 ≤ k < l. If det(A) = λ, by taking determinants in (1) we get λk = λl or

(2) λk(1− λl−k) = 0.

Keeping in mind that λ ∈ Z, from (2) it turns out that λ ∈ {−1, 0, 1}. The conclusion follows.



5. (In memory of Euler)

The problem of finding the exact value of the infinite sum
∞∑

n=1

1

n2
was considered by 17th cen-

tury mathematicians, including Mengoli, Leibniz and Bernoulli. Unable to solve the problem,
Jacob Bernoulli wrote:

If anyone finds and communicate to us that which thus far eluded our efforts, great will be our
gratitude.

about this problem, in 1689. It was Euler, regarded as one of the greatest mathematicians of
all times, who first established the remarkable identity

∞∑
n=1

1

n2
=

π2

6
in 1735. Given Euler’s formula, it is much easier to find the exact value of the

similar sum
∞∑

n=1

1

(2n− 1)2
. Find it.

Solution:

π2

6
=

∞∑
n=1

1

n2
=

∞∑
n=1

1

(2n− 1)2
+

∞∑
n=1

1

(2n)2

=
∞∑

n=1

1

(2n− 1)2
+

1

4

∞∑
n=1

1

n2
=

∞∑
n=1

1

(2n− 1)2
+

1

4

π2

6

Therefore,
∞∑

n=1

1

(2n− 1)2
=

π2

6
− 1

4

π2

6
=

π2

8

6. Find the limit:

lim
x→∞

1

2x2

∫ x2

0

√
1 + e−tdt

Solution: Since the improper integral
∫∞
0

√
1 + e−tdt is divergent (the integrand is greater

than 1 on (0,∞)), we have 0 ·∞, an indeterminate case. Converting this to the 0 over 0 case,
and applying l’hospital’s rule (and recalling the Fundamental Theorem of Calculus) we get

lim
x→∞

√
1 + e−x2 · 2x

4x
=

1

2

7. How many positive integer divisors does 20072007 have?

Solution: Note the prime factorization of 2007 is 32 · 223. Thus, 20072007 = 34014 · 2232007

and hence its positive divisors must all be of the form 3i · 223j, 0 ≤ i ≤ 4014, o ≤ j ≤ 2007.
Thus, it has 4015 · 3008 = 8, 062, 120 positive divisors.



8. In celebration of today being ”Blame Somebody Else Day,” you buy a cube as a gift for Dr.
Tom Dence, President of the Ohio Section of the MAA. (If you forgot to buy this, don’t worry,
you can blame someone else for forgetting.) In turns out that the only wrapping paper that
you have has the shape pictured here, where each of the small squares has sides of length 2
inches. Amazingly, this wrapping paper is exactly the proper size to cover the entire surface
of your cube without overlaps. (See picture)

(a) What is the volume of the cube you purchased?

(b) Draw dotted lines on this picture to show where you will have to fold the wrapping paper
in order to cover the cube.

Solution: Note the area of the wrapping paper is 12 ·4 = 48 in2. Thus, the surface area of the
cube is 48in2. Hence, 6s2 = 48 and so s =

√
8. Thus, the volume of the cube is s3 = 16

√
2in3.

The following picture displays how to fold the wrapping paper:

9. Suppose that there was a cancer diagnostic test that was 95% accurate both on those who do
and those who do not have the disease. If 0.4% of the population have cancer, compute the
probability that a tested person has cancer given that his or her test results indicate so.

Solution Let C be the event that a person has cancer and let T be the event that a person tests
positive for cancer. So we have that P (T |C) = 0.95 and P (T ′|C ′) = 0.95. Also, P (C) = 0.004.
We want to find P (C|T ). So,

P (C|T ) =
P (C ∩ T )

P (T )
=

P (T |C)P (C)

P (T ∩ C) + P (T ∩ C ′)

=
P (T |C)P (C)

P (T |C)P (C) + P (T |C ′)P (C ′)

=
(0.95)(0.004)

(0.95)(0.004) + (0.05)(0.996)
=

0.0038

0.536
= 0.0709



10. The Fibonacci sequence, 1, 2, 3, 5, 8, 13, . . . is given by the recursive formula

Fn+1 = Fn + Fn−1

where F1 = 1 and F2 = 2. Let an =
Fn

Fn−1

.

(a) Divide the above equation by Fn to find an equation relating an+1 to an.

(b) Show that
3

2
≤ an ≤ 2 ∀n ≥ 2.

(c) For each n ≥ 3, prove that

|an+1 − an| ≤
(

2

3

)2

|an − an−1|.

(d) Show that (an) is a Cauchy sequence and therefore converges to a limit.

(e) What is the limit?

Solution:

(a) an+1 = 1 +
1

an

(b) Note that a2 = 2 and a3 = 3/2. So, 3/2 ≤ a2 ≤ 2 and 3/2 ≤ a3 ≤ 2. Suppose that
3/2 ≤ ak ≤ 2. Then, ak ≤ 2 ⇒ 1/2 ≤ 1/ak ⇒ 3/2 ≤ 1 + 1/ak ⇒ 3/2 ≤ ak+1 and
3/2 ≤ ak ⇒ 1/ak ≤ 2/3 ⇒ 1 + 1/ak ≤ 5/3 ⇒ ak+1 ≤ 2. By induction we have that
3/2 ≤ an ≤ 2 for n ≥ 2.

(c) |a4 − a3| = |1 + 1/a3 − (1 + 1/a2)| = |1/a3 − 1/a2| = |a2 − a3|
|a2||a3| ≤

(
2

3

)2

|a3 − a2|

|an+1−an| = |1+1/an−(1+1/an−1)| = |1/an−1/an−1| = |an − an−1|
|an||an−1| ≤

(
2

3

)2

|an−1−an|
for n ≥ 3.

(d) First note that |an+1 − an| ≤
(

2
3

)2 |an−1 − an| ≤
(

2
3

)4 |an−2 − an−1| ≤
(

2
3

)6 |an−3 − an−2|.
We will show that |an+1−an| ≤

(
2
3

)2(n−2) |a3−a2|. Part (c) shows the base case. Suppose

that |ak+1−ak| ≤
(

2
3

)2(k−2) |a3−a2|. Then, by part (c) |ak+2−ak+1| ≤
(

2
3

)2 |ak+1−ak| and

by the inductive hypothesis, we have |ak+2−ak+1| ≤
(

2
3

)2 |ak+1−ak| ≤
(

2
3

)2 (
2
3

)2(k−2) |a3−
a2| =

(
2
3

)2(k+1−2) |a3 − a2| =
(

2
3

)2(k−1) |a3 − a2| as desired.

To show that (an) is Cauchy, let ε > 0 be given. Then, by the Archimedian Principle,

∃N ∈ N such that |a3 − a2|729
80

(
4
9

)N
< ε Now, ∀n > m > N we have |an − am| = |(an −

an−1)+(an−1−an−1)+· · ·+(am+1−am)| ≤ |(an−an−1)|+|(an−1−an−1)|+· · ·+|(am+1−am)|
≤ (

2
3

)2(n−3) |a3 − a2|+
(

2
3

)2(n−4) |a3 − a2|+ · · ·+ (
2
3

)2(m−2) |a3 − a2| =

|a3 − a2|
n−1∑

k=m

(
2

3

)2(k−2)

≤ |a3 − a2|
∞∑

k=m

(
2

3

)2k−4

= |a3 − a2|81

16

∞∑

k=m

(
4

9

)k

=

|a3 − a2|81

16

(
4

9

)m (
9

5

)
= |a3 − a2|729

80

(
4

9

)m

≤ |a3 − a2|729

80

(
4

9

)N

< ε. Thus the

sequence converges.

(e) Suppose an → L. Then L = 1 +
1

L
⇒ L2 − L − 1 = 0 ⇒ L =

1±√5

2
⇒ L =

1 +
√

5

2
since an > 0.


