2013 Leo Schneider Student Team Competition

1. For the arithmetic sequence $a_{1}, a_{2}, \ldots, a_{16}$, it is known that $a_{7}+a_{9}=a_{16}$. Find each subsequence of three terms that forms a geometric sequence.

Solution:

$a_{16}=a_{1}+15 d$, where d is the common difference, $a_{7}=a_{1}+6 d$ and $a_{9}=a_{1}+8 d$. Since $a_{7}+a_{9}=a_{16}$, $a_{1}+6 d+a_{1}+8 d=a_{1}+15 d$. Therefore, $d=a_{1}$. Therefore, the i-th term of the sequence $a_{i}=a_{1}+(i-1) d$, where $i=1,2,3, \ldots, 16$. Since $d=a_{1}, a_{i}=a_{1}+i a_{1}-a_{1}=i a_{1}$ so that $a_{1}=1 a_{1}, a_{2}=2 a_{1}, a_{3}=3 a_{1}, \ldots$.

Consequently, one subsequence forming a geometric sequence is a_{1}, a_{2}, a_{4} (with a common ratio $r=2$). A second subsequence is a_{1}, a_{3}, a_{9} (with a common ratio $r=3$). A third subsequence is a_{1}, a_{4}, a_{16} (with common ratio $r=4$). The fourth, fifth, and sixth subsequences are $a_{2}, a_{4}, a_{8}(r=2) ; a_{3}, a_{6}$, $a_{12}(r=2) ; a_{4}, a_{8}, a_{16}(r=2)$;

For non-integer values of r such that $1<r<4$, we have only $r=\frac{3}{2}$ and $r=\frac{4}{3}$, so that additional sequences are a_{4}, a_{6}, a_{9} and a_{9}, a_{12}, a_{16}
2. Compute the limit:

$$
\lim _{x \rightarrow \infty} \frac{1}{x e^{x}} \int_{x^{2}}^{(x+1)^{2}} e^{\sqrt{t}} d t
$$

Solution:

Applying L'Hospital's Rule, the Fundamental Theorem of Calculus, and the Chain Rule, we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\int_{x^{2}}^{(x+1)^{2}} e^{\sqrt{t}} d t}{x e^{x}} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \int_{x^{2}}^{(x+1)^{2}} e^{\sqrt{t}} d t}{d x}\left(x e^{x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{2(x+1) e^{x+1}-2 x e^{x}}{x e^{x}+e^{x}} \\
& =\lim _{x \rightarrow \infty} \frac{2 e(x+1)-2 x}{x+1} \\
& =2 e-2 .
\end{aligned}
$$

3. Part a. Let $f(x)=e^{x} \sin x$. Find $f^{(10)}(0)$, the 10 th derivative of f evaluated at $x=0$.

Part b. Let $f(x)=e^{x} \sin x$. Find $f^{(2013)}(0)$, the 2013th derivative of f evaluated at $x=0$.

Solution to part a. If $\sum_{n=0}^{\infty} a_{n} x^{n}$ is the Maclaurin series for f, then $f^{(10)}(0)=10!\cdot a_{10}$. One way to find a_{10} is to multiply the Maclaurin series for $y=e^{x}$ and $y=\sin x$ together and keep track of the coefficient of x^{10}. In this way, we see that

$$
a_{10}=\frac{2}{9!}-\frac{2}{3!7!}+\frac{1}{5!5!} .
$$

Thus, $f^{(10)}(0)=10!a_{10}=32$.

Solution to part b. It is easy to verify that $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=2, f^{\prime \prime \prime}(0)=2$, and $f^{(4)}(x)=-4 f(x)$. Thus, $f^{(2013)}(0)=(-4)^{2012 / 4}=-2^{1006}$. (Also, this gives us another way to solve part a: $f^{(10)}(0)=2(-4)^{8 / 4}=32$.)
4. Find, with explanation, the maximum value of $f(x)=x^{3}-3 x$ on the set of all real numbers x satisfying $x^{4}+36 \leq 13 x^{2}$.

Solution:

The condition $x^{4}+36 \leq 13 x^{2}$ is equivalent to

$$
x^{4}-13 x^{2}+36=\left(x^{2}-9\right)\left(x^{2}-4\right)=(x+3)(x-3)(x+2)(x-2) \leq 0,
$$

which is satisfied only on $[-3,-2]$ and on $[2,3]$. Since $f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)>0$ on $[-3,-2]$ and on $[2,3]$, the function f is increasing on both intervals. It follows that the maximum value is $\max \{f(-2), f(3)\}=18$.
5. Let N be a positive integer containing exactly 2013 digits none of whose digits is zero. Show that N is either divisible by 2012 or N can be changed to an integer that is divisible by 2013 by replacing some but not all of its digits by zero.

Solution:

Let $N=b_{1} b_{2} \ldots b_{2013}$ be an integer where each digit $b_{i}>0(i=1,2, \ldots 2013)$. Let $N_{0}=0$, and for any $1 \leq k \leq 2013$, let N_{k} denote the number obtained by replacing all but the first k digits of N by the digit 0 . By the pigeon hole principle, there exists $0 \leq k_{1}<k_{2} \leq 2013$ such that $N_{k_{1}}$ and $N_{k_{2}}$ are congruent modulo 2013. So the difference $N_{k_{1}}-N_{k_{2}}$ is divisible by 2013. Since $N_{k_{1}}-N_{k_{1}}$ is obtained from N by replacing some but not all of the digits of N by zero, we are done.
6. Prove that $2^{2013}+3$ is a multiple of 11 .

Solution. Working mod 11, we have that

$$
\begin{aligned}
2^{2013}+3 & =2^{3} \cdot 2^{2010}+3 \\
& =8\left(2^{5}\right)^{402}+3 \\
& =8(32)^{402}+3 \\
& \equiv 8(-1)^{402}+3 \\
& \equiv 0
\end{aligned}
$$

7. A random number generator randomly generates integers from the set $\{1,2, \ldots, 9\}$ with equal probability. Find the probability (with explanation) that after n numbers are generated, their product is a multiple of 10 .

Solution:

The product is a multiple of 10 if an only if at least one 5 and at least one even integer have been generated. If A is the event that a 5 has been generated, and B is the event that at least one even integer has been generated, then we are looking for $\operatorname{Pr}(A \cap B)$. Letting E^{\prime} denote the complement of an event E, we know that

$$
\begin{aligned}
\operatorname{Pr}\left((A \cap B)^{\prime}\right) & =\operatorname{Pr}\left(A^{\prime} \cup B^{\prime}\right) \\
& =\operatorname{Pr}\left(A^{\prime}\right)+\operatorname{Pr}\left(B^{\prime}\right)-\operatorname{Pr}\left(A^{\prime} \cap B^{\prime}\right)
\end{aligned}
$$

The event $A^{\prime} \cap B^{\prime}$ represents the case in which neither a 5 nor an even integer has been generated, and consequently $\operatorname{Pr}\left(A^{\prime} \cap B^{\prime}\right)=\left(\frac{4}{9}\right)^{n}$. Since $\operatorname{Pr}\left(A^{\prime}\right)=\left(\frac{8}{9}\right)^{n}$ and $\operatorname{Pr}\left(B^{\prime}\right)=\left(\frac{5}{9}\right)^{n}$, it follows that

$$
\operatorname{Pr}\left((A \cap B)^{\prime}\right)=\left(\frac{8}{9}\right)^{n}+\left(\frac{5}{9}\right)^{n}-\left(\frac{4}{9}\right)^{n}
$$

and

$$
\operatorname{Pr}(A \cap B)=1-\operatorname{Pr}\left((A \cap B)^{\prime}\right)=1-\left(\frac{8}{9}\right)^{n}-\left(\frac{5}{9}\right)^{n}+\left(\frac{4}{9}\right)^{n}
$$

8. Planet A is going to launch n missiles at Planet B , which has n cities. Each missile will hit exactly one city. For each missile, the Planet B city that gets hit is completely random. Find the probability that exactly one city on Planet B will not get hit with any of the n missiles.

Solution:

The probability is $\frac{\binom{n}{2} n!}{n^{n}}=\frac{(n-1)(n-1)!}{2 n^{n-2}}$. There are many ways to obtain this. Here is one. The denominator is n^{n} because this is the number of ways to place n missiles in n cities. The numerator is the number of ways of placing the missiles such that exactly one city is not hit. There are n ways to specify the city that does not get hit. There are $n-1$ ways of choosing the city that gets hit with two missiles. There are $\binom{n}{2}$ ways of picking the 2 missiles to hit this city. And there are $(n-2)$! ways of placing the remaining $n-2$ missiles into the $n-2$ cities, one missile in each city. The product of these is the numerator $n(n-1)\binom{n}{2}(n-2)!=\binom{n}{2} n$!.

Two unit squares stand on the hypotenuse of a $(3,4,5)$
9. triangle in such a way that they line inside the triangle, and a corner of one touches the side of length 3 and a
 corner of the other touches the side of length 4 , as shown in the figure to the right. What is the distance d between the squares?

Solution:

Because the small triangle in the lower left is similar to the $(3,4,5)$ triangle, we know that the side of length 3 in the figure has slope $\frac{4}{3}$, so the base of the small triangle in the lower left is $\frac{3}{4}$. The side of length 4 has slope $-\frac{3}{4}$, so the base of the small triangle in the lower right is $\frac{4}{3}$. Then

$$
d=5-\frac{3}{4}-\frac{4}{3}-2=\frac{11}{12} .
$$

10. Let A and B be 3×3 matrices with integer entries, such that $A B=A+B$. Find all possible values of $\operatorname{det}(A-I)$. Note: The symbol I represents the 3×3 identity matrix.

Solution:

The given equation is equivalent to

$$
A B-A-B+I=I \quad \text { or to } \quad(A-I)(B-I)=I
$$

Since the matrices have integer entries, the determinants of $A-I$ and $B-I$ are integers, and the last equation implies that $\operatorname{det}(A-I)=\operatorname{det}(B-I)= \pm 1$. Both cases are possible: if $A=B=O$, then $\operatorname{det}(A-I)=\operatorname{det}(-I)=-1$, and if $A=B=2 I$, then $\operatorname{det}(A-I)=\operatorname{det}(I)=1$.

